A Colorimetric Microplate Assay for DNA-Binding Activity of His-Tagged MutS Protein

نویسندگان

  • Michał Banasik
  • Paweł Sachadyn
چکیده

A simple microplate method was designed for rapid testing DNA-binding activity of proteins. The principle of the assay involves binding of tested DNA by his-tagged protein immobilized on a nickel-coated ELISA plate, following colorimetric detection of biotinylated DNA with avidin conjugated to horseradish peroxidase. The method was used to compare DNA mismatch binding activities of MutS proteins from three bacterial species. The assay required relatively low amounts of tested protein (approximately 0.5-10 pmol) and DNA (0.1-10 pmol) and a relatively short time of analysis (up to 60 min). The method is very simple to apply and convenient to test different buffer conditions of DNA-protein binding. Sensitive colorimetric detection enables naked eye observations and quantitation with an ELISA reader. The performance of the assay, which we believe is a distinguishing trait of the method, is based on two strong and specific molecular interactions: binding of a his-tagged protein to a nickel-coated microplate and binding of biotinylated DNA to avidin. In the reported experiments, the solution was used to optimize the conditions for DNA mismatch binding by MutS protein; however, the approach could be implemented to test nucleic acids interactions with any protein of interest.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of mismatched DNAs via the binding affinity of MutS using a gold nanoparticle-based competitive colorimetric method.

A gold nanoparticle-based competitive colorimetric assay can detect mismatched DNAs using MutS, a mismatch binding protein, and determine their relative binding affinities for this protein by a simple color change and the melting temperature of DNA-functionalized nanoparticle assemblies.

متن کامل

Application of a Seamless and Restriction Endonuclease-free Cloning Method to Produce Recombinant Full-length N-terminal His-tagged Streptolysin O in E.coli

Background and Aims: DNA cloning, sub-cloning and site directed mutagenesis are the most common strategies in nearly all projects of recombinant protein production. The classical method of restriction site cloning is unsatisfactory due to the need for supply of restriction enzymes and the inefficiency of the digestion reaction. Many new methods, including recombinatorial cloning and ligation in...

متن کامل

MutS as a tool for mutation detection.

MutS, a DNA mismatch-binding protein, seems to be a promising tool for mutation detection. We present three MutS based approaches to the detection of point mutations: DNA retardation, protection of mismatched DNA against exonuclease digestion, and chimeric MutS proteins. DNA retardation in polyacrylamide gels stained with SYBR-Gold allows mutation detection using 1-3 microg of Thermus thermophi...

متن کامل

Electrochemical detection of mismatched DNA using a MutS probe

A direct and label-free electrochemical biosensor for the detection of the protein-mismatched DNA interaction was designed using immobilized N-terminal histidine tagged Escherichia coli. MutS on a Ni-NTA coated Au electrode. General electrochemical methods, cyclic voltammetry (CV), electrochemical quartz crystal microbalance (EQCM) and impedance spectroscopy, were used to ascertain the binding ...

متن کامل

Rapid purification of HU protein from Halobacillus karajensis

The histone-like protein HU is the most-abundant DNA-binding protein in bacteria. The HU protein non-specifically binds and bends DNA as a hetero- or homodimer, and can participate in DNA supercoiling and DNA condensation. It also takes part in DNA functions such as replication, recombination, and repair. HU does not recognize any specific sequences but shows a certain degree of specificity to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2016